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Abstract Wave interaction with a porous cylindrical breakwater is studied analytically by linear potential wave
theory. The breakwater is assumed to have a thin skin, is bottom-mounted and surface-piercing. The porosity of the
breakwater is uniform vertically but varies in the circumferencial direction. This allows the choice of a partially
impermeable wall or a vertical slot in the breakwater. Three different basic configurations of the breakwater are
investigated, namely, (1) uniformly porous cylinder; (2) porous cylinder with partial impermeable wall; and (3)
porous cylinder with an opening. The performance of these types of breakwaters is studied vs. wave parameters and
breakwater configurations including angle and position of opening or partial impermeable wall as well as porosity.
Parametric studies with regard to the wave-amplification factor, wave forces, and elevation contours are made. The
results should be found useful in the design of coastal and offshore structures.

Keywords Circular breakwater · Porous structure · Short-crested wave · Wave diffraction

1 Introduction

Porous breakwaters are often constructed to reduce the wave impact on coastal and offshore structures. They can
also reduce resonance more effectively than an impermeable breakwater [1]. Since the early work of Jarlan [2],
wave interaction with a porous breakwater has attracted the attention of many coastal and offshore researchers. In
one instance among many, Dalrymple et al. [3] studied the reflection and transmission of a wave train at an oblique
angle of incidence by an infinitely long porous breakwater. Subsequently, Huang and Chao [4] reported the inertial
effect of the porous breakwater based on Biot’s theory of poroelasticity.

Following the porous-wavemaker theory of Chwang [5] and subsequent works, investigations have primarily
been concentrated on the hydrodynamic effects of a porous structure on the incoming wave trains, or wave impact on
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porous structures as a breakwater in a harbour (e.g., [1,6,7]). In most cases, Darcy’s law for a homogeneous porous
medium has been applied. Yu and Chwang [6] investigated the resonance in a harbour with porous breakwaters
subjected to an arbitrary wave angle followed by an extensive study on the wave-transmission characteristics past
a porous structure [7]. They also investigated the behaviour of waves within the porous medium. It was found that
there is an optimum thickness for a porous structure beyond which any further increase in the thickness may not lead
to an appreciable improvement in reducing its transmission and reflection characteristics. Wang and Ren [8] studied
the performance of a flexible porous breakwater, and found that hydrodynamic forces on the interior cylinder as
well as wave amplitudes around the windward side of the interior cylinder are reduced when compared to the case
of a direct wave impact on the interior cylinder. More related works can be found in the review article of Chwang
and Chan [1].

The aforementioned studies on the interaction of ocean surface waves with a vertical porous breakwater have
generally been two-dimensional. In reality, however, the ocean waves are more complex, and better described by
three-dimensional (3D) short-crested waves. They also commonly arise, for example, from the oblique interaction
of two travelling plane waves or intersecting swell waves, or from the reflection of waves at non-normal incidence
off a vertical seawall, as well as from the diffraction about the surface boundaries of a structure of finite length.
These multi-directional, multi-component waves are of paramount importance in coastal and offshore engineering
design. In contrast to plane waves propagating in a single direction, and the standing waves fluctuating vertically
in a confined region, short-crested waves can be doubly periodic in two horizontal directions, one in the direction
of propagation and the other normal to it [9].

Theoretical analysis on short-crested wave interaction with a vertical cylinder can be found in [10–12]. Zhu [10]
presented an analytic solution to the diffraction problem for a solid circular cylinder in short-crested waves using
linear potential wave theory and found that the pressure distribution and wave run-up on the cylinder were quite
different from those of plane incident waves. Their patterns become very complex as ka (i.e., total incident wave
number k times cylinder radius a) becomes large. The hydrodynamic forces on the cylinder become smaller as
the short-crestedness of the incident waves increases. Subsequently, Zhu and Moule [11] observed that the hydro-
dynamic force induced by short-crested waves varies with the phase angle perpendicular to the direction of wave
propagation. Later, Zhu and Satravaha [12] extended the analytical solution for the velocity potential to second
order.

Although efforts have been made on wave interaction with porous cylinders and breakwaters, there is no relevant
work on the wave interaction with a perforated cylindrical breakwater having variable porosity and opening. In this
paper, analytical solutions are derived to study this problem in a quantitative manner. Detailed numerical results are
presented over a broad range of incident short-crested wave parameters as well as structural configurations including
the porosity of the breakwater and the angle and position of the impermeable wall and opening. In particular, their
effects on wave-amplification factors, wave forces, and wave elevation contours near the structure are discussed.

2 Theoretical consideration

2.1 Problem description

It is worth noting that a theoretical derivation can be made for 2D plane waves, and the linear solutions of 3D
short-crested waves can be obtained by linear superposition of two plane waves. We intend to extend this study
to include nonlinear effects. Therefore, in this section, the mathematical formulae are derived for a general case
of interaction of 3D short-crested waves with a porous cylindrical breakwater of variable porosity. Note that the
solutions for the 2D limiting cases, i.e., a plane incident wave and a standing wave, can be instantly recovered from
it by letting ky = 0 and kx = 0 (kx = wave number in the x-direction, ky = wave number in the y-direction)
respectively.

Consider a monochromatic short-crested wave train propagating in the direction of the positive x-axis. A perfo-
rated cylindrical breakwater extends from the sea bottom to above the free surface of the ocean along the z-axis.
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Fig. 1 Definition sketch of
short-crested waves on a
porous cylindrical
breakwater
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The origin is placed at the centre of the cylindrical breakwater on the mean water surface (see Fig. 1). A partially
impermeable wall or opening is located at θ ∈ (ε1, ε2) in cylindrical coordinates (r, θ, z), where ε1 and ε2 are
the beginning and end angles of the impermeable wall or opening, respectively. The whole fluid region is divided
into two regions, namely the region inside the breakwater, �1 and the region outside the breakwater, �2. The
following notations are used in the paper: � j = total velocity potential, �I

j = velocity potential of incident wave,

�S
j = velocity potential of scattered wave, k = total wave number, ω = wave frequency, h = water depth, A =

amplitude of incident wave, a = radius of the cylindrical breakwater, t = time, ρ = mass density of water, and g =
gravitational acceleration. The subscripts j ( j = 1, 2) denotes the physical parameters in the region � j ( j = 1, 2).

Assume that the fluid is inviscid and incompressible, and the flow is irrotational. Then the fluid flow can be
described by a velocity potential �j , which satisfies the Laplace equation

∇2� j = 0 in � j , (1)

subject to the combined linearised free-surface boundary condition

� j,t t + g� j,z = 0 at z = 0, (2)

and the bottom condition

� j,z = 0 at z = −h, (3)

where the comma in the subscript designates partial derivative with respect to the variable following it.
The total velocity potential in region �2 can be expressed by the summation of the incident and scattered wave

velocity potentials

�2 = �I
2 +�S

2 in �2, (4)

where �I
2 and �S

2 also satisfy (1–3).
The velocity potential of the linear short-crested incident wave [13] travelling principally in the positive

x-direction is given by the real part of

�I
2 = − ig A

ω
f (z, h)ei(kx x−ωt) cos(ky y) in �2, (5)

where k2 = k2
x + k2

y , and

f (z, h) = cosh k(z + h)

cosh kh
. (6)
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The term f (z, h) leads to the sea-bottom condition being automatically satisfied, while the linearised free-surface
boundary condition is satisfied by use of the dispersion relationship:

ω2 = gk tanh kh. (7)

Assuming that the fluid flow passing through the perforated breakwater as a porous boundary obeys Darcy’s law
[14]; the boundary condition on perforated breakwater can then be expressed as [5]

�1,r = �2,r = iG(θ)k(�1 −�2) on r = a, (8)

�S
2,r = iG(θ)k(�1 −�S

2 −�I
2)−�I

2,r on r = a, (9)

where r is the radial axis, i = √−1,G(θ) = ρωd(θ)
µ

is a measure of the porosity, µ is the coefficient of dynamic
viscosity, d(θ) is a material constant having the dimension of length. The porous effect parameter G is a dominant
parameter in the present study. Its value depends on the geometrical parameters of the permeable wall and wave
factors [15]. The geometrical parameters of a permeable wall consist mainly of geometrical porosity, plate thickness
and porous shape. In engineering practices, the geometrical porosity is about 20% and can reach as high as 60% or
higher in some circumstances. Several porous shapes are common in coastal or offshore structures, including slits
screens and circular or rectangular holes. A detailed method of estimating G can be found in [15]. In addition, the
scattered potential satisfies the Sommerfeld radiation condition at infinity as follows:

lim
kr→∞(kr)1/2

(
�S

2,r − ik�S
2

)
= 0 in �2. (10)

Therefore, the velocity potential of the scattered wave �S
2 in �2 is governed by the Laplace equation (1) with the

boundary conditions (2) and (3), the boundary condition at the interface of fluid and breakwater at r = a (8) and
(9), and the radiation condition (10).

The velocity potential �1 in the interior domain �1 is governed by the Laplace equation (1) with the boundary
conditions (2) and (3), and the boundary conditions at the interface of fluid and breakwater at r = a:

�1,r = iG(θ)k(�1 −�S
2 −�I

2) on r = a. (11)

These constitute two sets of the governing equation and corresponding boundary conditions for the diffraction
of short-crested waves by a vertical perforated cylindrical breakwater with nonuniform porosity, corresponding to
boundary-value problems in a bounded domain and an unbounded domain, respectively. After obtaining�S

2 ,�2 and
�1 by solving the above boundary-value problems, all the physical quantities including the fluid particle velocity,
free-surface elevation and the dynamic pressure can be calculated, respectively, from

v j = ∇� j , (12)

η j = iω

g
� j |z=0,t=0, (13)

p j = −ρ� j,t . (14)

2.2 Analytical solution

The wave potential of the incident wave (5) can be written in the cylindrical coordinates as

�I
2 = − ig A

ω
f (z, h)e−iωt

[+∞∑
m=0

εm im Jm(kxr) cos(mθ)

][+∞∑
n=0

εn J2n(kyr) cos(2nθ)

]
, (15)

where

εm =
{

1 for m = 0
2 for m �= 0

, (16)

and the Jm and J2n are Bessel functions of the mth and 2nth order, respectively.
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Upon splitting the product of the two trigonometric functions, and truncating the infinite series at m = M and
n = N , Eq. 15 becomes

�I
2 = − ig A

2ω
f (z, h)e−iωt

M∑
m=0

N∑
n=0

εmεn im Jm(kxr)J2n(kyr) · [cos(m + 2n)θ + cos(m − 2n)θ ]. (17)

Equation 17 can be further simplified as

�I
2 = − ig A

ω
f (z, h)e−iωt

L∑
l=0

ψl(kxr, kyr) cos(lθ), (18)

where L = M + 2N , and

ψl(kxr, kyr) = 1

2

⎧⎨
⎩

min{N ,�l/2�}∑
n=max{0,	(l−M)/2
}

εl−2nεn il−2n Jl−2n(kxr)J2n(kyr)

+
min{N ,�(M−l)/2�}∑

n=0

εl+2nεn il+2n Jl+2n(kxr)J2n(kyr)

+
min{N ,�(M+l)/2�}∑

n=	l/2

ε2n−lεn i2n−l J2n−l(kxr)J2n(kyr)

⎫⎬
⎭, (19)

in which 	 
 is a function giving the greatest integer less than or equal to its argument and � � is a function
returning the smallest integer greater than or equal to its argument.

According to [6] and [10], the evanescent waves do not exist in the absence of related boundary conditions. The
solution of the scattered velocity potential in region �2 can be constructed by the following expression

�S
2 = − ig A

ω
f (z, h)e−iωt

{
L∑

l=0

A1
l cos(lθ)Hl(kr)+

L∑
l=1

A2
l sin(lθ)Hl(kr)

}
, (20)

which satisfies the Laplace equation (1), boundary conditions (2) and (3), and the Sommerfeld radiation condition
(10) for all A1

l and A2
l , where Hl is the Hankel functions of the first kind, and A1

l and A2
l are unknown complex

coefficients.
Similarly, the solution of the velocity potential in the interior region �1 can be constructed as

�1 = − ig A

ω
f (z, h)e−iωt

{
L∑

l=0

B1
l cos(lθ)Jl(kr)+

L∑
l=1

B2
l sin(lθ)Jl(kr)

}
, (21)

where B1
l and B2

l are unknown complex coefficients.
Substituting (18), (20) and (21) in the body boundary conditions (8) and (11), and noting the orthogonality

property of the trigonometric functions, we have

B1
l J ′

l (ka) = ψ ′
l (kx a, kya)/k + A1

l H ′
l (ka), (22)

B2
l J ′

l (ka) = A2
l H ′

l (ka), (23)
L∑

l=0

[B1
l Jl(ka)− A1

l Hl(ka)− ψl(kx a, kya)] cos(lθ)+
L∑

l=1

[B2
l Jl(ka)− A2

l Hl(ka)] sin(lθ)

= 1

iG(θ)

{
L∑

l=0

B1
l J ′

l (ka) cos(lθ)+
L∑

l=1

B2
l J ′

l (ka) sin(lθ)

}
, (G �= 0), (24)

where the prime denotes the derivative with respect to r .
It should be noted that (24) is not appropriate when G = 0. However, if a very small value (e.g. 1 × e−12) is

assigned to G(θ), representing the case of impermeable wall, Eq. 24 still applies and leads to highly accurate results.
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From (22) and (23), we have

B1
l = ψ ′

l (kx a, kya)+ k H ′
l (ka)A1

l

k J ′
l (ka)

, l = 0, 1, 2, . . . , L , (25)

B2
l = H ′

l (ka)

J ′
l (ka)

A2
l , l = 1, 2, . . . , L . (26)

Multiplying both sides of (24) by cos( jθ)( j = 0, 1, 2, . . . , L) and sin( jθ) ( j = 1, 2, . . . , L), integrating with
respect to θ from 0 to 2π , and further simplifying by the orthogonality property of the trigonometric functions, we
obtain the following set of linear equations:

DA + EB + C = 0, (27)

in which

A =
[

A1
0, A1

1, . . . , A1
L , A2

1, . . . , A2
L

]T
, (28)

B =
[

B1
0 , B1

1 , . . . , B1
L , B2

1 , . . . , B2
L

]T
, (29)

C = −Q
, (30)

D = −QH, (31)

E = QJ + iSJ′, (32)

Q = diag[2π, π, π, . . . , π ], (33)

H = diag[H0(ka), H1(ka), . . . , HL(ka), H1(ka), . . . , HL(ka)], (34)

� = diag[ψ0(kx a, kya), ψ1(kx a, kya), . . . , ψL(kx a, kya), 0, . . . , 0], (35)

J = diag[J0(ka), J1(ka), . . . , JL(ka), J1(ka), . . . , JL(ka)], (36)

J′ = diag[J ′
0(ka), J ′

1(ka), . . . , J ′
L(ka), J ′

1(ka), . . . , J ′
L(ka)], (37)

S jl =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2π∫
0

1
G(θ) cos( jθ) cos(lθ)dθ 0 ≤ j ≤ L , 0 ≤ l ≤ L ,

2π∫
0

1
G(θ) cos( jθ) sin(l − L)θdθ 0 ≤ j ≤ L , L + 1 ≤ l ≤ 2L + 1,

2π∫
0

1
G(θ) sin( j − L)θ cos(lθ)dθ L + 1 ≤ j ≤ 2L + 1, 0 ≤ l ≤ L ,

2π∫
0

1
G(θ) sin( j − L)θ sin(l − L)θdθ L + 1 ≤ j ≤ 2L + 1, L + 1 ≤ l ≤ 2L + 1,

, (38)

where “diag” denotes a diagonal matrix with the elements in the square brackets on the main diagonal.
Equations 25–27 constitute a set of linear equations for A1

l , A2
l , B1

l , and B2
l . Once the values of these coefficients

are obtained, all the physical quantities can be calculated accordingly.

2.3 Physical quantities

The elevations in the interior and exterior regions are

η1 = A

{
L∑

l=0

B1
l Jl(kr) cos(lθ)+

L∑
l=1

B2
l Jl(kr) sin(lθ)

}
, (39)

η2 = A

{
L∑

l=0

[ψl(kxr, kyr)+ A1
l Hl(kr)] cos(lθ)+

L∑
l=1

A2
l Hl(kr) sin(lθ)

}
. (40)
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The pressures on the boundary (interior and exterior) are

p1 = ρg A f (z, h)e−iωt

{
L∑

l=0

B1
l Jl(ka) cos(lθ)+

L∑
l=1

B2
l Jl(ka) sin(lθ)

}
, (41)

p2 = ρg A f (z, h)e−iωt

{
L∑

l=0

[ψl(kx a, kya)+ A1
l Hl(ka)] cos(lθ)+

L∑
l=1

A2
l Hl(ka) sin(lθ)

}
. (42)

The total force per unit length in the direction of s(s = x, y) is

dFs

dz
= a

⎡
⎣

2π∫

0

(p1 − p2) · ϕsdθ

⎤
⎦ = Ps(kx , ky, k, a) · ρga A · f (z, h)e−iωt , (43)

where the function Ps(kx , ky, k, a) is a nondimensional parameter of dFs
dz

without the constant term

ρga A · f (z, h)e−iωt , and

ϕx = cos(θ), ϕy = sin(θ). (44)

By the orthogonality of the trigonometric functions, only the term l = 1 in the series (41) and (42) remains, so that
the function Ps(kx , ky, k, a) can be expressed explicitly as

Px (kx , ky, k, a) = π ·
[

B1
1 J1(ka)− ψl(kx a, kya)− A1

1 H1(ka)
]
, (45)

Py(kx , ky, k, a) = π ·
[

B2
1 J1(ka)− A2

1 H1(ka)
]
. (46)

The function Ps(kx , ky, k, a) determines the first-order total force in the s(s = x, y) direction on the perforated
cylindrical structure, Fs , which can be obtained by integrating (43) with respect to z,

Fs =
0∫

−h

dFs

dz
dz = Ps(kx , ky, k, a) · ρgha Ae−iωt · tanh(kh)/kh. (47)

The total moments about an axis parallel to the y-and x-axis passing through the bottom of the cylindrical structure,
respectively, are

My =
0∫

−h

(z + h)
dFx

dz
dz = Px (kx , ky, k, a)ρgh2a Ae−iωt Z(kh), (48)

Mx = −
0∫

−h

(z + h)
dFy

dz
dz = −Py(kx , ky, k, a)ρgh2a Ae−iωt Z(kh), (49)

where

Z(kh) = [kh tanh(kh)+ sech(kh)− 1]/(kh)2. (50)

It is noted from (47–49) that only the function Ps(kx , ky, k, a) needs to be determined in order to derive all the
subsequent results.

2.4 Limiting case

For uniform porous cylinder, i.e., G(θ) = G0, matrix S becomes a diagonal matrix and the solution can be expressed
explicitly as
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A1
l = − iπkaG0[ψl J ′

l (ka)− ϕ′
l Jl(ka)/k] + πaϕ′

l J ′
l (ka)

2G0 + πka J ′
l (ka)H ′

l (ka)
, (51)

B1
l = −iπkaG0[ψl H ′

l (ka)− ϕ′
l Hl(ka)/k]

2G0 + πka J ′
l (ka)H ′

l (ka)
, (52)

A2
l = B2

l = 0. (53)

3 Results and discussion

Figure 2 shows the variations of the wave-amplification factor (|η|/A) at the origin r = 0 (left) and the nondimen-
sional wave forces on the breakwater (right) vs. ka. Figure 2a and d correspond to the case of a breakwater with a
uniform porosity (G0 = 1), and Fig. 2b, e and c, f correspond to the cases of a breakwater with a partially solid wall
and a partial opening, respectively, at 175◦ < θ < 185◦ with the balance of the porosity remaining at G0 = 1. Cases
comprising five different wave spread angles at β = 0, π/8, π/4, 3π/8, and π/2 (where β = arctan(ky/kx )) are
calculated and the results are plotted. As can be seen in Fig. 2a, all the curves representing wave-amplification factors
of different wave spread angles coincide with one another. This is a clear indication that the wave-amplification
factor at the origin is independent of the wave spread angle β for breakwaters with a uniform porosity. The wave-
amplification factor at the origin is seen to decrease monotonically from 1 to approximately half as ka increases
up to about 2.2, and then increase monotonically to about 1 before ka reaches a value around 3.8 and afterwards
fluctuates again. As shown in Fig. 2b, the variation of the wave-amplification factor for a breakwater with a partially
solid wall is very similar to that of a breakwater with uniform porosity. However, waves of different β-values result
in slightly different amplification factors. It is seen that a standing wave (β = π/2) tends to result in the highest
amplification factor whilst the incident short-crested wave with kx = ky produces the lowest amplification factor
for a large range of ka. As indicated in Fig. 2c, the variation of amplification factor for the breakwater with a partial
opening is similar to that for the breakwater with a uniform porosity at large ka. A distinct feature of the variation
of amplification factor is that an additional peak is clearly observed for each short-crestedness at around ka = 0.2,
and the maximum amplification factor at the origin is about 1.15. Furthermore, as one would expect, a plane wave
is seen to result in the highest amplification factor, while a standing wave tends to result in its lowest value for
ka ≤ 3.

For a breakwater with a uniform porosity, the nondimensional wave force in the direction of wave propagation
(Fig. 2d–f), decreases as the short-crestedness increases. In fact, the wave force becomes zero when the short-
crestedness reaches its maximum value (i.e., standing waves), since the configuration is symmetric about the
y-axis. Peaks and troughs occur at approximately the same ka-value for different short-crestedness. However, for
the breakwater with a partially solid wall (Fig. 2e) or an opening (Fig. 2f), the wave forces induced by a standing
wave are no longer zero, since now the configuration is nonsymmetric about the y-axis and the peaks and troughs for
different short-crestedness tend to occur at slightly different values of ka. More specifically, the peaks and troughs
occur at larger ka for the partially solid wall, while they occur at smaller values of ka for the opening. Due to the
asymmetry in the configuration, the breakwater with a partially solid wall yields the largest wave force and the one
with a partial opening gives the smallest wave force, except for the case of standing incident wave.

Figure 3 shows the influence of the porosity on the wave-amplification factor at the origin r = 0 (left) and wave
forces on the breakwater (right) for a breakwater with uniform porosity G0, a partial solid wall and a partial opening
at 175◦ < θ < 185◦ with porosity of the remaining part G0. As can be seen from Fig. 3a–c, wave spreading angles
have little effect on the amplification factor for all the breakwater configurations. The amplification factors at the
origin increase monotonically towards their asymptotic values. Also, Fig. 3d–f shows that a larger wave spreading
angle clearly results in a smaller wave force, except for the case of standing incident waves.

Many coastal and offshore structures are commonly designed with non-uniform porosity along the circumfer-
ential direction. Figure 4 shows the wave-amplification factor at the origin and wave forces vs. opening area angle
for breakwaters with a partial solid wall (left) and a partial opening (right) located at θ = 180◦, and the porosity
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Fig. 2 Variation of wave-amplification factor at r = 0 (left) and nondimensional wave force on the breakwater (right) with porosity
G0 = 1 vs. ka
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Fig. 3 Variation of wave-amplification factor at r = 0 (left) and nondimensional wave force on the breakwater (right) at ka = 1 vs. G0
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Fig. 4 Variation of wave-amplification factor at r = 0 and nondimensional wave force on the breakwater with solid (left) or opening
(right) centre at θ = 180◦, ka = 1 and G0 = 1 vs. solid or opening area angle

of the remaining part at G0 = 1. For the breakwater with a partial solid wall (Fig. 4a) the amplification factors at
origin generally decrease monotonically as the angle of the solid area increases with largest value for a standing
wave, and reaches zero at θ ≈ 345◦. For the case of partial opening, Fig. 4c shows that the amplification factor
at origin initially increases to a peak at the opening area reaching approximately half of the circumference then
decreasing to 1 with increasing opening area angle. A plane incident wave is clearly seen to produce the largest
amplification factor, while a standing wave generates the smallest. It clearly indicates that more surface disturbance
occurs within the interior for the opening area angle in the range of 180◦ ∼ 360◦ depending on the short-crestedness
of the incident waves.

As clearly shown in Fig. 4b and d, a general trend of increasing wave forces with decreasing short-crestedness
is observed for breakwaters with either a partially solid wall or an opening. Although fluctuating with the solid or
opening area angles, larger wave forces occur for the breakwater with a partially solid wall than that with uniform
porosity without the solid part, while the breakwater with an opening tends to experience smaller wave forces.
The largest wave forces occur when the solid area angle varies in the neighbourhood of 180◦ for a plane incident
wave. As the short-crestedness increases, the wave force for the breakwater with a partially solid wall peaks for the
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Fig. 5 Variation of wave-amplification factor at r = 0 and nondimensional wave force on the breakwater with solid (left) or opening
(right) area angle 10◦ at ka = 1 and G0 = 1 vs. the location of the solid or opening centre
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breakwater with a larger proportion of solid wall. In contrast, for the breakwater with a partial opening, the largest
wave force always occurs at zero opening area, i.e., the breakwater of uniform porosity without any opening.

Figure 5 shows the variation of wave amplification factor at the origin and wave forces on the breakwater for
the cases of breakwaters with a partially solid wall (left) and a partial opening (right) vs. their centre location
with a solid or an opening area angle of 10◦ with the remaining part at G0 = 1. As the location of the solid or
opening centre varies, the amplification factor fluctuates whilst the largest amplification factor is often induced by
either plane or standing incident waves. At some positions, different short-crestedness results in almost the same
amplification factor (e.g., 70◦ for breakwater with a solid wall, and 40◦ and 120◦ for breakwater with an opening).
As for the wave forces in the x-direction, the earlier observations about smaller short-crestedness and solid wall
inducing larger wave forces still hold. However, the variation of the location of the solid or opening centre does
not affect the magnitude of the inline force much. When the solid or opening centre are at θ = 90◦, the breakwater
becomes symmetric along the y-axis leading to zero wave force in the x-direction due to standing waves. The wave
force in the y-direction is rather small compared to its counterpart in the x-direction, and the largest wave force
often occurs in either plane or standing incident waves.

Figure 6 shows equi-amplitude (left) and equi-phase (right) contours for the interior region of the breakwater gen-
erated by incident plane, short-crested, and standing waves corresponding to the wave spreading angles β = 0, π/4
and π/2, respectively. The breakwater has a partial opening at 175◦ < θ < 185◦, and porosity of the remaining part
is at G0 = 1. Also wave number k = 1 m−1 and a = 5 m. It can be seen that the wave patterns for short-crested
and standing incident waves are much more complex than the one for plane incident waves. The surface elevation
within the breakwater is seen to decrease as β increases. In addition to the symmetry with respect to the x-axis,
the wave-elevation pattern due to a standing wave is seen almost symmetric with respect to the y-axis as well. In
this case, the slightly asymmetry with respect to the y-axis is introduced by the small opening. The thick lines in
phase contours represent changes from π to −π . The amphidromic points, where equi-phase lines converge and the
wave amplitude vanishes, clearly form for short-crested and standing incident waves. The phases near two adjacent
amphidromic points rotate from −π to +π clockwise and counter-clockwise around the points, respectively. For
the standing incident wave component, the amplitudes in the transverse directions are small compared to their inline
values, with a faster variation in the corresponding phase contours.

4 Conclusions

A general 3D short-crested wave interaction with a porous cylindrical breakwater has been studied analytically by
use of linear potential wave theory. Three basic configurations of the breakwater were investigated. The perfor-
mance of the breakwater has been examined by the effects of short-crested wave parameters, structural porosity,
and the angle and position of the partial impermeable wall and opening on wave-amplification factor, wave forces,
and wave-elevation contours. It was found that by making the porosity nonuniform, the amplification factor, wave
forces, and elevation contours become more complex than its counterpart of uniform porosity. Incident waves with
smaller short-crestedness along with solid walls generally result in larger wave forces, whilst an opening on the
breakwater and limiting incident waves, i.e., plane or standing waves clearly lead to larger amplification factors
within the breakwater. The effect of the location of the solid or opening centre appears to be insignificant on the
inline wave force (Px ), but rather significant on the transverse wave force (Py). However, since Py is one order
smaller than Px , we can conclude that the wave force is insensitive to the location of the solid or opening centre.
Due to asymmetrical geometry, wave forces induced by standing incident waves are no longer zero. Here the com-
ponent in the direction perpendicular to the incident wave may come forth, although the magnitude is normally
small.

It is hoped that the analysis presented and the results of the parametric study in the paper will be found useful in
the design of coastal and offshore structures. They should be useful in selecting a suitable circular breakwater for
a particular application.
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Fig. 6 Equi-amplitude (left) and Equi-phase (right) contours for incident short-crested wave with short-crestedness angles β =
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